Holographic Coulomb branch flows with $\mathcal{N}=1$ supersymmetry

Chethan N. Gowdigere and Nicholas P. Warner
Department of Physics and Astronomy, University of Southern California Los Angeles, CA 90089-0484, U.S.A.
E-mail: gowdiger@usc.edu, warner@usc.edu

Abstract: We obtain a large, new class of $\mathcal{N}=1$ supersymmetric holographic flow backgrounds with $U(1)^{3}$ symmetry. These solutions correspond to flows toward the Coulomb branch of the non-trivial $\mathcal{N}=1$ supersymmetric fixed point. The massless (complex) chiral fields are allowed to develop vevs that are independent of their two phase angles, and this corresponds to allowing the brane to spread with arbitrary, $U(1)^{2}$ invariant, radial distributions in each of these directions. Our solutions are "almost Calabi-Yau:" The metric is hermitian with respect to an integrable complex structure, but is not Kähler. The "modulus squared" of the holomorphic (3,0)-form is the volume form, and the complete solution is characterized by a function that must satisfy a single partial differential equation that is closely related to the Calabi-Yau condition. The deformation from a standard Calabi-Yau background is driven by a non-trivial, non-normalizable 3 -form flux dual to a fermion mass that reduces the supersymmetry to $\mathcal{N}=1$. This flux also induces dielectric polarization of the $D 3$-branes into $D 5$-branes.

Keywords: Superstring Vacua, AdS-CFT Correspondence, Supersymmetry and Duality.

Contents

1. Introduction 1
2. Some field theory constraints on the holographic dual 3
3. The supergravity background 5
3.1 The metric and complex structure 5
3.2 The tensor gauge fields 6
3.3 The supersymmetries 7
4. Calabi-Yau conditions 7
4.1 Imposing the Kähler condition8
4.2 Calabi-Yau metrics 9
4.3 The Killing spinors on the Calabi-Yau manifold 9
5. The new flux solutions 10
6. Radial Coulomb branch flows 12
7. Gauged supergravity flows 13
7.1 The known solution and its holomorphic structure 14
7.2 The master functions 15
8. Conclusions 17
A. Finding the master function of the gauged supergravity flow 17

1. Introduction

In this paper we continue our study of supersymmetric backgrounds in string theory, and most particularly for holography. In the more traditional compactifications of string theory the internal, or compactifying manifold is either compact, or effectively compact. ${ }^{1}$ This makes the task of classifying supersymmetric backgrounds somewhat easier. Indeed, for smooth solutions to IIB supergravity it has been shown that $\mathcal{N}=1$ supersymmetry in four dimensions places some very stringent constraints on the background fields. For example (1), 2, if there is no dilaton then the compactification has to be a warped Calabi-Yau manifold with an imaginary self-dual 3 -form flux. However, the proof makes strong use of the squareintegrability of the background fields, and is therefore invalid for non-compact or singular

[^0]backgrounds with non-normalizable fields. This exception is precisely what one wishes to study in holography, where the non-normalizable modes correspond to perturbations of the Lagrangian of the holographic field theory. Thus the study of supersymmetric, holographic flows is precisely a study in the exceptions to the theorem of [1].

There are now very large families of physically interesting non-compact backgrounds with reduced supersymmetry. Many of them are based upon Calabi-Yau backgrounds, but some of them are complex, but not Kähler [3-7]. The family we wish to focus on here is one of the simplest holographic flows: One starts with the $\mathcal{N}=4$ supersymmetric Yang-Mills theory and gives a mass to a single $\mathcal{N}=1$ chiral multiplet. As is well-known, this perturbed theory preserves $\mathcal{N}=1$ supersymmetry and has a non-trivial infra-red fixed point [8]. The holographic description of this fixed point, and the flow to it, is also well studied [7, 9-[13]. Indeed, there has been recent progress in understanding the underlying geometry in terms of spaces that are almost Calabi-Yau manifolds [7]. This paper further develops this work. The two chiral multiplets that are not given a mass remain massless along the flow and so the complete $\mathcal{N}=1$ supersymmetric field theory also has a two complex-dimensional Coulomb branch. A three-parameter family of flows on this Coulomb branch were studied in [14, (15]. One of the parameters was the mass of the chiral multiplet, Φ_{3}, while the other two were independent vevs of Φ_{1} and Φ_{2}. Since these solutions were based upon gauged supergravity, the vevs of these fields were very restricted and corresponded to brane distributions that spread uniformly in each of these directions. Our purpose here is to analyze solutions in which the branes are allowed to spread with arbitrary radial distributions in each of these two directions. This means the solutions will depend upon three variables that correspond to the magnitudes, Φ_{j}. As in [7] we will be able to characterize our solutions in terms of a deformation of the Calabi-Yau condition.

On a more technical level, we will proceed in the same spirit as 16-21, and use algebraic Killing spinors. In the past, such calculations have involved imposing a high level of symmetry so that the metric functions and fluxes can only depend upon two variables. In [19] this led to a result that appeared to depend upon having only two-variables: The solution was determined by a single function $\Psi(u, v)$, but one also needed to construct a conjugate function, $S(u, v)$, that looked like a non-linear analog of the harmonic conjugate of $\Psi(u, v)$. It was thus not clear whether the relatively simple results of [19] were an artifact of the high level of symmetry. In this paper we consider generalizations of the flow of [19] in which there is less symmetry, and the underlying functions depend upon three variables. We will show that the simplicity of the result of [19, (7) persists: The non-trivial flow solutions arise from a deformation of the Calabi-Yau condition. Indeed we found that deriving the related Calabi-Yau metric first provided remarkable insights into how to solve the more general problem with non-trivial fluxes considered here. In the process of finding the more general class of solutions we will also simplify and unify the results of [19, 7].

In section 2 we will briefly summarize the relevant field theory and use its symmetries to constrain the Ansatz for the holographic theory. In section 3 we will make the complete Ansatz for the holographic background. In section \square^{1} we will find the "wrong solution" in that we will set the fluxes to zero and find the most general Calabi-Yau metric. In section ${ }^{5}$ we present the new solutions by showing how the Calabi-Yau equations are successively
modified．We then show that the new solutions are＂almost Calab－Yau＂in that they have an integrable complex structure，the metric is hermitian，there is a holomorphic（3，0）－form that squares to the volume form，but the Kähler form is not closed，and thus the metric is not Kähler．In sections 6 and 7 we show how the solutions of［19，7］and［14，15］．are contained in our far more general family．Finally，in section $⿴ 囗 ⿱ 一 一{ }^{8}$ we make some concluding remarks．

2．Some field theory constraints on the holographic dual

The underlying field theory is $\mathcal{N}=4$ super－Yang－Mills theory perturbed by a mass term for one of the three $\mathcal{N}=1$ adjoint chiral superfields．The superpotential has the form：

$$
\begin{equation*}
W=\operatorname{Tr}\left(\Phi_{3}\left[\Phi_{1}, \Phi_{2}\right]\right)+\frac{1}{2} m \operatorname{Tr}\left(\Phi_{3}^{2}\right) . \tag{2.1}
\end{equation*}
$$

This breaks the supersymmetry to $\mathcal{N}=1$ ，and the theory flows to a non－trivial $\mathcal{N}=1$ superconformal fixed point in the infra－red［8］．The holographic description of the fixed point and flow may be found in［22， 9 － 11 ］The fields，Φ_{1} and Φ_{2} remain massless and there is thus a four－dimensional Coulomb branch described in terms of the vevs of Φ_{1} and Φ_{2} ．A two－parameter family of holographic flows on this Coulomb branch were studied in 15，（14）， and a brane－probe study can be found in［12，13］．For the moment we will assume that the vevs of Φ_{1} and Φ_{2} are zero．

The $\mathcal{N}=4$ theory has an $S O(6) \mathcal{R}$－symmetry，and under the deformation（2．1）this is broken to an $S U(2)$ global symmetry and a $U(1) \mathcal{R}$－symmetry．The $S U(2)$ acts on Φ_{1} and Φ_{2} as a doublet，while the \mathcal{R} symmetry acts on Φ_{1}, Φ_{2} and Φ_{3} with charges（ $1 / 2,1 / 2,1$ ） ［9］：

$$
\begin{equation*}
\Phi_{j} \rightarrow e^{\frac{1}{2} i \alpha} \Phi_{j}, \quad j=1,2 ; \quad \Phi_{3} \rightarrow e^{i \alpha} \Phi_{3} . \tag{2.2}
\end{equation*}
$$

and so both terms in the superpotential（2．1）have \mathcal{R}－charge 2 ，as they must．If we allow the mass，m ，to rotate by a phase then we have a further $U(1)$ symmetry under which：

$$
\begin{equation*}
\Phi_{j} \rightarrow e^{\frac{1}{2} i \alpha} \Phi_{j}, \quad j=1,2, \quad \Phi_{3} \rightarrow \Phi_{3}, \quad m \rightarrow m e^{i \alpha} . \tag{2.3}
\end{equation*}
$$

This may，of course，be mixed with the \mathcal{R}－symmetry action．
In the holographic dual，the vevs of the scalar fields correspond to directions perpen－ dicular to the branes，and we will represent the three complex directions corresponding to Φ_{1}, Φ_{2} and Φ_{3} by three sets of complex polar coordinates：$\left(v, \varphi_{1}\right),\left(w, \varphi_{2}\right)$ and $\left(u, \varphi_{3}\right)$ ．For later convenience（and to match the conventions of earlier papers），we will make the field theory identifications in which，at least asymptotically：

$$
\begin{equation*}
\Phi_{1} \sim v e^{-i \varphi_{1}}, \quad \Phi_{2} \sim w e^{-i \varphi_{2}}, \quad \Phi_{3} \sim u e^{+i \varphi_{3}} . \tag{2.4}
\end{equation*}
$$

Thus the $S U(2)$ acts on $\left(v, \varphi_{1}\right)$ and $\left(w, \varphi_{2}\right)$ ，and the $U(1) \mathcal{R}$ symmetry corresponds to：

$$
\begin{equation*}
\varphi_{j} \rightarrow \varphi_{j}-\frac{1}{2} \alpha, \quad j=1,2 ; \quad \varphi_{3} \rightarrow \varphi_{3}+\alpha \tag{2.5}
\end{equation*}
$$

Invariance under the $S U(2) \times U(1)_{\mathcal{R}}$ where the $U(1)_{\mathcal{R}}$ is defined by (2.5) means that if any of the fields depend upon the φ_{j}, then they can only depend upon the sum: $\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)$.

The IIB theory also has a ten-dimensional \mathcal{R} symmetry [23-25] that acts on the B field with charge +1 . The B field is dual to the fermion mass, and this symmetry corresponds to (2.3) in the field theory. In terms of coordinates the latter symmetry is:

$$
\begin{equation*}
\varphi_{j} \rightarrow \varphi_{j}-\frac{1}{2} \alpha, \quad j=1,2, \quad \varphi_{3} \rightarrow \varphi_{3}, \quad B \rightarrow B e^{i \alpha} \tag{2.6}
\end{equation*}
$$

One therefore finds that the B field dual to the fermion mass in (2.1) must have the phase dependence:

$$
\begin{equation*}
B_{\mu \nu} \sim e^{i\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)} \tag{2.7}
\end{equation*}
$$

One can also deduce this result directly from linearization of the supergravity action and using the fact that the fermion masses are dual to the lowest modes of the tensor gauge field, $B_{\mu \nu}$. This is also consistent with the results of 19, 7.

From [26, 19, 7] we also know that the family of flows we seek has a complex structure that matches the intuitive complex structure provided by the field theory. Moreover, by a suitable choice of the B-field gauge, we may take the holographic dual of the fermion mass term to be a B field of holomorphic type $(2,0)$. In addition we also know that for these flows the dilaton background is trivial.

In this paper we want to investigate the Coulomb branch of the flow. We are therefore going to allow Φ_{1} and Φ_{2} to develop vevs. However, to keep things manageable, we are going to assume that these vevs are invariant under the $U(1)^{2} \subset S U(2) \times U(1)_{\mathcal{R}}$. That is, the branes can spread in the (v, w) directions, but will only be allowed to do so in a manner that is independent of $\left(\varphi_{1}, \varphi_{2}\right)$. Thus the metric and all the background fields will have a $U(1)^{3}$ invariance, but will be allowed to depend arbitrarily upon (u, v, w). It is convenient to represent the $U(1)$ symmetries in terms of Lie derivatives. First, there is the residual $U(1)$ subgroup of $S U(2)$ generated by:

$$
\begin{equation*}
\left(\mathcal{L}_{1}-\mathcal{L}_{2}\right) \tag{2.8}
\end{equation*}
$$

where \mathcal{L}_{j} denotes the Lie Derivative along the Killing vector defined by translations along φ_{j}. Then there is the \mathcal{R} symmetry operator:

$$
\begin{equation*}
\mathcal{L}_{\mathcal{R}} \equiv \mathcal{L}_{3}-\frac{1}{2}\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right) \tag{2.9}
\end{equation*}
$$

Finally, there is the extra $U(1)$ is given by:

$$
\begin{equation*}
-\frac{1}{2}\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right)+Q_{I I B} \tag{2.10}
\end{equation*}
$$

where $Q_{I I B}$ is the IIB \mathcal{R} charge of the field upon which this operator acts.
The Killing spinors that generate the unbroken supersymmetry transformations must transform appropriately under these $U(1)$'s. First, before we turn on the vevs of Φ_{1}, Φ_{2}, the supersymmetries must be a $S U(2)$ singlet, and thus:

$$
\begin{equation*}
\left(\mathcal{L}_{1}-\mathcal{L}_{2}\right) \epsilon=0 \tag{2.11}
\end{equation*}
$$

The operator $\mathcal{L}_{\mathcal{R}}$ must generate the \mathcal{R}-symmetry and hence:

$$
\begin{equation*}
\mathcal{L}_{\mathcal{R}} \epsilon \equiv\left(\mathcal{L}_{3}-\frac{1}{2}\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right)\right) \epsilon=\Gamma^{1234} \epsilon \tag{2.12}
\end{equation*}
$$

The right hand side of this equation is precisely reflects the fact that the \mathcal{R}-symmetry rotates the four-dimensional spinor components with charges ± 1 depending upon their helicity. Under the last $U(1)$ one has:

$$
\begin{equation*}
\frac{1}{2}\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right) \epsilon=\frac{1}{2} \epsilon \tag{2.13}
\end{equation*}
$$

where we have used the fact that $Q_{I I B}=\frac{1}{2}$ for the supersymmetry.
There are some signs and ambiguities in the the foregoing prescription. First, the is the sign of the term on the right-hand side of (2.12) depends upon spinor conventions. Secondly, it is not obvious that the action of (2.13) should not be combined with a fourdimensional \mathcal{R} symmetry transformation of the supersymmetry parameter, but it turns out that the ten-dimensional chiral rotation implied by $Q_{I I B}=\frac{1}{2}$ is all that one needs. The complete justification of the foregoing angular dependences of ϵ really comes from the fact that they are required by the solutions of the supersymmetry conditions that we analyze below. ${ }^{2}$ Our purpose here is to make the angular behaviour of the Killing spinors more intuitive. Having done this, we have pinned down solution sufficiently to provide a readily solvable Ansatz for the holographic dual in supergravity.

3. The supergravity background

3.1 The metric and complex structure

We take the ten-dimensional manifold to have the usual warped product form:

$$
\begin{equation*}
d s_{10}^{2}=H_{0}^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)-H_{0}^{-2} d s_{6}^{2}, \tag{3.1}
\end{equation*}
$$

where $d s_{6}^{2}$ is a hermitian metric on a complex manifold, \mathcal{M}_{6}, transverse to the D 3 branes. Following from the field theory, we will parametrize this "internal manifold" by three complex coordinates whose phases, $\varphi_{j}, j=1,2,3$, generate a $U(1)^{3}$ symmetry of the background. The remaining, "radial coordinates," will be denoted by (u, v, w). Following [19, 7], it is natural to single out a complex coordinate $z_{3} \equiv u e^{i \varphi_{3}}$ that is to be associated with the directions dual to the massive chiral multiplet. One then fibers the remaining two complex directions over this base. To be more explicit, we take the complex coordinates to be

$$
\begin{equation*}
z_{1} \equiv e^{h_{1}+i \varphi_{1}}, \quad z_{2} \equiv e^{h_{2}+i \varphi_{2}}, \quad z_{3} \equiv u e^{i \varphi_{3}} \tag{3.2}
\end{equation*}
$$

for some functions, $h_{j}(u, v, w)$, and introduce the holomorphic forms:

$$
\begin{align*}
& \omega_{1} \equiv d h_{1}+i d \varphi_{1}-\left(\partial_{u} h_{1}\right) \omega_{3}=\left(\partial_{v} h_{1}\right) d v+\left(\partial_{w} h_{1}\right) d w+i\left(d \varphi_{1}-u \partial_{u} h_{1} d \varphi_{3}\right) \\
& \omega_{2} \equiv d h_{2}+i d \varphi_{2}-\left(\partial_{u} h_{2}\right) \omega_{3}=\left(\partial_{v} h_{2}\right) d v+\left(\partial_{w} h_{2}\right) d w+i\left(d \varphi_{2}-u \partial_{u} h_{2} d \varphi_{3}\right) \\
& \omega_{3} \equiv d u+i u d \varphi_{3} \tag{3.3}
\end{align*}
$$

[^1]We then make the metric Ansatz:

$$
\begin{equation*}
d s_{6}^{2}=A_{1}\left|\omega_{1}\right|^{2}+A_{2}\left|\omega_{2}\right|^{2}+A_{3}\left|\omega_{3}\right|^{2}+A_{0}\left(\omega_{1} \bar{\omega}_{2}+\omega_{2} \bar{\omega}_{1}\right) . \tag{3.4}
\end{equation*}
$$

where the A_{j} are, as yet arbitrary functions of (u, v, w). This Ansatz is a natural generalization of the results found in [19, 7]. The presence of the cross terms with coefficient A_{0}, are suggested by the angular terms noted in (14, 15).

The complex structure is:

$$
\begin{equation*}
J=A_{1} \omega_{1} \wedge \bar{\omega}_{1}+A_{2} \omega_{2} \wedge \bar{\omega}_{2}+A_{3} \omega_{3} \wedge \bar{\omega}_{3}+A_{0}\left(\omega_{1} \wedge \bar{\omega}_{2}+\omega_{2} \wedge \bar{\omega}_{1}\right) . \tag{3.5}
\end{equation*}
$$

An alternative way to arrive at this Ansatz is to use the reparametrization invariance $u \rightarrow \tilde{u}(u, v, w)$ to arrange that the metric in the $\left(u, \varphi_{3}\right)$ directions is proportional to $d u^{2}+$ $u^{2} d \varphi_{3}^{2}$. We may then use the reparametrization invariance in v and w to eliminate crossterms of the form $d u d v$ and $d u d w$. Thus (3.4) provides the most general hermitian metric with the coordinates fixed in this manner. We have thus fixed the coordinates by prescribing the form of the metric, and we will solve for the functions that define the complex variables. As we will see, this inversion of the usual procedure leads to a significant simplifications.

To define the spinors, we introduce the frames:

$$
\begin{align*}
e^{a} & =H_{0} d x^{a}, \quad a=1, \ldots, 4, & & \left(e^{5}+i e^{10}\right)=H_{0}^{-1} H_{3} \omega_{3}, \\
\left(e^{6}+i e^{9}\right) & =H_{0}^{-1}\left(H_{1} \omega_{1}+H_{4} \omega_{2}\right), & & \left(e^{7}+i e^{8}\right)=H_{0}^{-1} H_{2} \omega_{2}, \tag{3.6}
\end{align*}
$$

and thus:

$$
\begin{equation*}
A_{0}=H_{1} H_{4}, \quad A_{1}=H_{1}^{2}, \quad A_{2}=\left(H_{2}^{2}+H_{4}^{2}\right), \quad A_{3}=H_{3}^{2} . \tag{3.7}
\end{equation*}
$$

3.2 The tensor gauge fields

Since we are dealing with a distribution of $D 3$ branes, we define the five-form field strength in terms of a single potential function:

$$
\begin{equation*}
C_{(4)}=k d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3}, \tag{3.8}
\end{equation*}
$$

for some function, $k(u, v, w)$, and then take the five-form field strength to be:

$$
\begin{equation*}
F_{(5)}=d C_{(4)}+* d C_{(4)} . \tag{3.9}
\end{equation*}
$$

The Ansatz for the two-form potential is simply to take the most general $(2,0)$ form with the appropriate phase dependence:

$$
\begin{equation*}
B_{(2)}=-i e^{i\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)}\left[b_{1} \omega_{2} \wedge \omega_{3}-b_{2} \omega_{1} \wedge \omega_{3}+b_{3} \omega_{1} \wedge \omega_{2}\right], \tag{3.10}
\end{equation*}
$$

where the b_{j} are arbitrary functions of (u, v, w). In principle these functions could be complex, but they turn out to be real in the flow solution we find here.

3.3 The supersymmetries

It is convenient to define the supersymmetries via projection operators. In particular it is very useful to use projectors to isolate the supersymmetries that would be associated with \mathcal{M}_{6} were it to be a Calabi-Yau manifold. To that end, define the projectors:

$$
\begin{array}{rlrl}
\Pi_{0} & =\frac{1}{2}\left[\mathbb{1}-i \Gamma^{1234}\right], \quad \quad \Pi_{1}=\frac{1}{2}\left[\mathbb{1}-i \Gamma^{78}\right] \\
\Pi_{2} & =\frac{1}{2}\left[\mathbb{1}-i \Gamma^{69}\right], & \Pi_{3}=\frac{1}{2}\left[\mathbb{1}+i \Gamma^{510}\right] \tag{3.12}
\end{array}
$$

Define the spinor, ϵ_{0}, to be one that is constant and satisfies:

$$
\begin{equation*}
\Pi_{j} \epsilon_{0}=0, \quad j=0,1,2,3 \tag{3.13}
\end{equation*}
$$

One of these projections is redundant because of the helicity condition: $\Gamma^{11} \epsilon=-\epsilon$ where $\Gamma^{11} \equiv \Gamma^{1 \ldots 10}$.

Introduce the rotation matrix

$$
\begin{equation*}
\mathcal{O}(\beta) \equiv \cos \left(\frac{1}{2} \beta\right)+\sin \left(\frac{1}{2} \beta\right) \Gamma^{79} * \tag{3.14}
\end{equation*}
$$

where $*$ denotes the complex conjugation operator. The Killing spinor is then given explicitly by:

$$
\begin{equation*}
\epsilon=H_{0}^{\frac{1}{2}} e^{\frac{i}{2}\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)} \mathcal{O}(\beta) e^{-i \varphi_{3}} \epsilon_{0} \tag{3.15}
\end{equation*}
$$

This spinor obeys the projection conditions:

$$
\begin{equation*}
\widehat{\Pi}_{0} \epsilon=0, \quad \Pi_{1} \epsilon=0, \quad \Pi_{2} \epsilon=0 \tag{3.16}
\end{equation*}
$$

where $\widehat{\Pi}_{0}$ is the dielectrically deformed projection operator [16-21]:

$$
\begin{equation*}
\widehat{\Pi}_{0}=\frac{1}{2}\left[\mathbb{1}-i \Gamma^{1234}\left(\cos (\beta)-e^{i\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)} \sin (\beta) \Gamma^{79} *\right)\right] \tag{3.17}
\end{equation*}
$$

Also observe that the spinor, ϵ, satisfies (2.11), (2.12) and (2.13), which, in fact, determine the dependence of ϵ upon the angles φ_{j}. The normalization factor, $H_{0}^{\frac{1}{2}}$, in (3.15) is fixed by the requirement that:

$$
\begin{equation*}
K^{\mu}=\bar{\epsilon} \Gamma^{\mu} \epsilon \tag{3.18}
\end{equation*}
$$

is a Killing vector.

4. Calabi-Yau conditions

It is very instructive to look at the the conditions on the metric (3.4) and complex structure (3.5) required to make \mathcal{M}_{6} into a Calabi-Yau space. This will not generate the flow background that we seek, but it will come very close.

4.1 Imposing the Kähler condition

It is convenient to introduce the matrices:

$$
\mathcal{A} \equiv\left(\begin{array}{ll}
A_{1} & A_{0} \tag{4.1}\\
A_{0} & A_{2}
\end{array}\right), \quad \mathcal{H} \equiv\left(\begin{array}{ll}
v^{-1} \partial_{v} h_{1} & w^{-1} \partial_{w} h_{1} \\
v^{-1} \partial_{v} h_{2} & w^{-1} \partial_{w} h_{2}
\end{array}\right)
$$

and set

$$
\mathcal{B} \equiv\left(\begin{array}{ll}
B_{1} & B_{2} \tag{4.2}\\
B_{3} & B_{4}
\end{array}\right)=\mathcal{A} \cdot \mathcal{H} .
$$

Then the conditions that (3.5) be Kähler are equivalent to:

$$
\begin{align*}
\partial_{u} \mathcal{B} & =0 \tag{4.3}\\
\frac{1}{w} \partial_{w} B_{1} & =\frac{1}{v} \partial_{v} B_{2}, \quad \frac{1}{w} \partial_{w} B_{3}=\frac{1}{v} \partial_{v} B_{4} \tag{4.4}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{A} \cdot\binom{u^{-1} \partial_{u}\left(u \partial_{u} h_{1}\right)}{u^{-1} \partial_{u}\left(u \partial_{u} h_{2}\right)}=-\left(\mathcal{H}^{-1}\right)^{t} \cdot\binom{v^{-1} \partial_{v} A_{3}}{w^{-1} \partial_{w} A_{3}}, \tag{4.5}
\end{equation*}
$$

where the superscript t denotes the transpose.
At large values of u we want the metric on \mathcal{M}_{6} to become asymptotically flat:

$$
\begin{equation*}
d s_{6}^{2} \rightarrow\left(d u^{2}+u^{2} d \varphi_{3}^{2}\right)+\left(d v^{2}+v^{2} d \varphi_{1}^{2}\right)+\left(d w^{2}+w^{2} d \varphi_{2}^{2}\right) \tag{4.6}
\end{equation*}
$$

and hence, at large u, we must have

$$
\begin{equation*}
h_{1} \rightarrow \log (v), \quad h_{2} \rightarrow \log (w), \quad A_{1} \rightarrow v^{2}, \quad A_{2} \rightarrow w^{2}, \quad A_{0} \rightarrow 0 \tag{4.7}
\end{equation*}
$$

Therefore, for all values of u we must have:

$$
\mathcal{B}=\left(\begin{array}{ll}
1 & 0 \tag{4.8}\\
0 & 1
\end{array}\right),
$$

and thus:

$$
\mathcal{A} \equiv\left(\begin{array}{cc}
A_{1} & A_{0} \tag{4.9}\\
A_{0} & A_{2}
\end{array}\right)=\mathcal{H}^{-1}=\Delta^{-1}\left(\begin{array}{cc}
v \partial_{w} h_{2} & -v \partial_{w} h_{1} \\
-w \partial_{v} h_{2} & w \partial_{v} h_{1}
\end{array}\right)
$$

where Δ is the Jacobian:

$$
\begin{equation*}
\Delta \equiv\left(\partial_{v} h_{1}\right)\left(\partial_{w} h_{2}\right)-\left(\partial_{v} h_{2}\right)\left(\partial_{w} h_{1}\right) \tag{4.10}
\end{equation*}
$$

This system of equations is elementary to analyze. First observe that (4.9) gives A_{0}, A_{1} and A_{2} in terms of h_{j}. Moreover, there are two equations for A_{0} and these imply:

$$
\begin{equation*}
v \partial_{w} h_{1}=w \partial_{v} h_{2} \quad \Leftrightarrow \quad h_{1}=\frac{1}{v} \partial_{v} g, \quad h_{2}=\frac{1}{w} \partial_{w} g \tag{4.11}
\end{equation*}
$$

for some "master function," g. Finally, using $\mathcal{A}=\mathcal{H}^{-1}$ in (4.5) shows that:

$$
\begin{equation*}
A_{3}=-u^{-1} \partial_{u}\left(u \partial_{u} g\right) \tag{4.12}
\end{equation*}
$$

Thus the coordinates and the entire Kähler metric are determined once we know the function g.

4.2 Calabi-Yau metrics

The following is a manifestly holomorphic $(3,0)$-form on \mathcal{M}_{6} :

$$
\begin{equation*}
\Omega \equiv d z_{1} \wedge d z_{2} \wedge d z_{3}=e^{h_{1}+h_{2}} e^{i\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)} \omega_{1} \wedge \omega_{2} \wedge \omega_{3} \tag{4.13}
\end{equation*}
$$

A Ricci-flat, Kähler metric has the property

$$
\begin{equation*}
\frac{1}{3!} J \wedge J \wedge J=\Omega \wedge \bar{\Omega} \tag{4.14}
\end{equation*}
$$

and using (3.5) and (4.13) this equation is equivalent to:

$$
\begin{equation*}
A_{3}\left(A_{1} A_{2}-A_{0}^{2}\right)=e^{2\left(h_{1}+h_{2}\right)} \tag{4.15}
\end{equation*}
$$

Using the Kähler conditions derived above, this becomes:

$$
\begin{equation*}
\frac{1}{u} \partial_{u}\left(u \partial_{u} g\right)+\frac{\Delta}{v w} \exp \left(2\left(\frac{1}{v} \partial_{v} g+\frac{1}{w} \partial_{w} g\right)\right)=0 \tag{4.16}
\end{equation*}
$$

One can write this as a system for the h_{j} by acting with ∂_{v} and ∂_{w} :

$$
\begin{align*}
\frac{1}{u} \partial_{u}\left(u \partial_{u} h_{1}\right)+\frac{1}{v} \partial_{v}\left(\frac{\Delta}{v w} e^{2\left(h_{1}+h_{2}\right)}\right) & =0 \\
\frac{1}{u} \partial_{u}\left(u \partial_{u} h_{2}\right)+\frac{1}{w} \partial_{w}\left(\frac{\Delta}{v w} e^{2\left(h_{1}+h_{2}\right)}\right) & =0 \tag{4.17}
\end{align*}
$$

which is the natural generalization of the result presented in [7].

4.3 The Killing spinors on the Calabi-Yau manifold

Consider the spinor, $\hat{\epsilon}$, defined by taking $\beta=0$ and $H_{0}=1$ in (3.15). This spinor obeys:

$$
\begin{equation*}
\frac{1}{2}\left[\mathbb{1}+i \Gamma^{510}\right] \hat{\epsilon}=\frac{1}{2}\left[\mathbb{1}-i \Gamma^{69}\right] \hat{\epsilon}=\frac{1}{2}\left[\mathbb{1}-i \Gamma^{78}\right] \hat{\epsilon}=0 \tag{4.18}
\end{equation*}
$$

and has a phase dependence:

$$
\begin{equation*}
\hat{\epsilon}=e^{\frac{i}{2}\left(\varphi_{1}+\varphi_{2}-\varphi_{3}\right)} \epsilon_{0} \tag{4.19}
\end{equation*}
$$

This spinor is, in fact, the one associated with the complex structure (3.5) but with $\varphi_{3} \rightarrow-\varphi_{3}$. This change of complex structure is naturally suggested by the field theory since it is consistent with the phases in (2.4). To be more explicit, consider a new set of holomorphic forms:

$$
\begin{align*}
& \hat{\omega}_{1} \equiv d h_{1}+i d \varphi_{1}-\left(\partial_{u} h_{1}\right) \hat{\omega}_{3}=\left(\partial_{v} h_{1}\right) d v+\left(\partial_{w} h_{1}\right) d w+i\left(d \varphi_{1}+u \partial_{u} h_{1} d \varphi_{3}\right) \\
& \hat{\omega}_{2} \equiv d h_{2}+i d \varphi_{2}-\left(\partial_{u} h_{2}\right) \hat{\omega}_{3}=\left(\partial_{v} h_{2}\right) d v+\left(\partial_{w} h_{2}\right) d w+i\left(d \varphi_{2}+u \partial_{u} h_{2} d \varphi_{3}\right) \\
& \hat{\omega}_{3} \equiv d u-i u d \varphi_{3}=\bar{\omega}_{3} \tag{4.20}
\end{align*}
$$

along with a complex structure defined by (3.5), but with $\omega_{i} \rightarrow \hat{\omega}_{i}$. The spinor, $\hat{\epsilon}$, is then the Killing spinor for the Calabi-Yau metric associated with this complex structure on \mathcal{M}_{6}. This change of complex structure generates some simple sign changes in the analysis above.

This observation about the complex structure will make no difference to the subsequent analysis in this paper, however it will prove important if one tries to to interpolate between the Calabi-Yau flow of [27] and that of [9, 11] as discussed in [28, 7]. In particular, it is important to note that the two-form tensor gauge fields are of type $(2,0)$ with respect to the complex structure (3.5), but in the $\beta \rightarrow 0$ limit the Killing spinor of that solution is not that of the Calabi-Yau space based upon the complex structure (3.5). Put differently, if one starts with the Calabi-Yau flow, then the B-field flux is not of type $(2,0)$ with respect to the complex structure of the Calabi-Yau metric: The holomorphic forms are complex conjugated in the $\left(u, \varphi_{3}\right)$ direction.

5. The new flux solutions

The solutions with the non-trivial background fluxes closely parallel the Calabi-Yau solutions found in the previous section. The metric is no longer Kähler, but the two-form:

$$
\begin{equation*}
\widehat{J} \equiv A_{1} \omega_{1} \wedge \bar{\omega}_{1}+A_{2} \omega_{2} \wedge \bar{\omega}_{2}+A_{3} \cos (\beta) \omega_{3} \wedge \bar{\omega}_{3}+A_{0}\left(\omega_{1} \wedge \bar{\omega}_{2}+\omega_{2} \wedge \bar{\omega}_{1}\right), \tag{5.1}
\end{equation*}
$$

is closed. In comparing this with (3.5), note the presence of the $\cos \beta$ in the third term. This means that \hat{J} no longer yields an almost complex structure when combined with the metric (3.4), but the closure of \widehat{J} provides a very convenient way of encoding some of the equations that define the new flux solutions. This means (4.3), (4.4) and (4.9) remain true, and that there is still a "master function," g, defined by (4.11). Moreover, (4.5) is replaced by:

$$
\begin{equation*}
\mathcal{A} \cdot\binom{u^{-1} \partial_{u}\left(u \partial_{u} h_{1}\right)}{u^{-1} \partial_{u}\left(u \partial_{u} h_{2}\right)}=\left(\mathcal{H}^{-1}\right)^{t} \cdot\binom{v^{-1} \partial_{v}\left(A_{3} \cos (\beta)\right)}{w^{-1} \partial_{w}\left(A_{3} \cos (\beta)\right)} . \tag{5.2}
\end{equation*}
$$

The sign change in (5.2) as compared to (4.5) is due to the change complex structure described in section 娄. To specify A_{3} and β independently, we need a further equation, and this is:

$$
\begin{equation*}
\mathcal{A} \cdot\binom{u^{-1} \partial_{u} h_{1}}{u^{-1} \partial_{u} h_{2}}=\left(\mathcal{H}^{-1}\right)^{t} \cdot\binom{v^{-1} \partial_{v}\left(\frac{1}{2} A_{3} \cos ^{2}\left(\frac{1}{2} \beta\right)\right)}{\left.w^{-1} \partial_{w}\left(\frac{1}{2} A_{3} \cos ^{2}\left(\frac{1}{2} \beta\right)\right)\right)} . \tag{5.3}
\end{equation*}
$$

Combining this with (5.2) one obtains:

$$
\begin{equation*}
\mathcal{A} \cdot\binom{u^{3} \partial_{u}\left(u^{-3} \partial_{u} h_{1}\right)}{u^{3} \partial_{u}\left(u^{-3} \partial_{u} h_{2}\right)}=-\left(\mathcal{H}^{-1}\right)^{t} \cdot\binom{v^{-1} \partial_{v} A_{3}}{w^{-1} \partial_{w} A_{3}} . \tag{5.4}
\end{equation*}
$$

Using (4.9) and (4.11), and particularly the fact that $\mathcal{A}=\mathcal{H}^{-1}$, one can integrate these equations:

$$
\begin{equation*}
A_{3}=-u^{3} \partial_{u}\left(u^{-3} \partial_{u} g\right)+k_{1}(u), \quad \frac{1}{2} A_{3} \cos ^{2}\left(\frac{1}{2} \beta\right)=u^{-1} \partial_{u} g+k_{2}(u) \tag{5.5}
\end{equation*}
$$

where k_{1}, k_{2} are arbitrary functions of u. A more detailed analysis of the supersymmetry variations, yields:

$$
\begin{equation*}
A_{3}=-u^{3} \partial_{u}\left(\frac{1}{2} u^{-2} A_{3} \cos ^{2}\left(\frac{1}{2} \beta\right)\right), \tag{5.6}
\end{equation*}
$$

from which we obtain $k_{1}(u)=-u^{3} \partial_{u}\left(u^{-2} k_{2}(u)\right)$. To fix these functions completely one should first note that the function g is itself only defined by (4.11) up to an arbitrary function of u, and so we can set $k_{2}=0$ by absorbing it into the definition of g. It follows that $k_{1}=0$. Finally, note that at large v, w we must have $A_{3} \rightarrow 1$ and $\beta \rightarrow 0$, and so we must have

$$
\begin{equation*}
g(u, v, w) \sim \frac{1}{4} u^{2}, \quad v, w \rightarrow \infty \tag{5.7}
\end{equation*}
$$

The supersymmetry also requires (4.14) and hence (4.15). Thus we have the following differential equation for g :

$$
\begin{equation*}
u^{3} \partial_{u}\left(u^{-3} \partial_{u} g\right)+\frac{\Delta}{v w} \exp \left(2\left(\frac{1}{v} \partial_{v} g+\frac{1}{w} \partial_{w} g\right)\right)=0 \tag{5.8}
\end{equation*}
$$

which can also be converted to system for the h_{j} by acting with ∂_{v} and ∂_{w} :

$$
\begin{align*}
u^{3} \partial_{u}\left(\frac{1}{u^{3}} \partial_{u} h_{1}\right)+\frac{1}{v} \partial_{v}\left(\frac{\Delta}{v w} e^{2\left(h_{1}+h_{2}\right)}\right) & =0 \\
u^{3} \partial_{u}\left(\frac{1}{u^{3}} \partial_{u} h_{2}\right)+\frac{1}{w} \partial_{w}\left(\frac{\Delta}{v w} e^{2\left(h_{1}+h_{2}\right)}\right) & =0 \tag{5.9}
\end{align*}
$$

Using (4.7) and (5.7) we find that g must satisfy (5.8) and with boundary conditions:

$$
\begin{equation*}
g(u, v, w) \sim \frac{1}{4}\left[u^{2}+v^{2}(2 \log (v)-1)+w^{2}(2 \log (w)-1)\right], \quad u, v, w \rightarrow \infty \tag{5.10}
\end{equation*}
$$

Once one finds a solution to this equation one determines the metric functions on \mathcal{M}_{6} via (4.9) and (5.5), which we summarize as:

$$
\begin{array}{ll}
A_{1}=\frac{v}{w \Delta} \partial_{w}^{2} g, & A_{2}=\frac{w}{v \Delta} \partial_{v}^{2} g \\
A_{0} & =\frac{1}{\Delta} \partial_{v} \partial_{w} g, \tag{5.11}
\end{array} A_{3}=-u^{3} \partial_{u}\left(u^{-3} \partial_{u} g\right) .
$$

The deformation angle, β, is given by (5.5), and this may be rewritten as

$$
\begin{equation*}
\cos ^{2}\left(\frac{1}{2} \beta\right)=-\frac{2 \partial_{u} g}{u^{4} \partial_{u}\left(u^{-3} \partial_{u} g\right)} \tag{5.12}
\end{equation*}
$$

The remaining parts of the solution are simple to determine from the functions defined above. Exactly as in (19, we have:

$$
\begin{equation*}
H_{0}^{2}=\frac{a u}{\sqrt{A_{3}} \sin \beta}, \quad k=-\frac{1}{4} H_{0}^{4} \cos \beta \tag{5.13}
\end{equation*}
$$

where a is a constant of integration, and k is the function in (3.8). The constant, a, may be absorbed into a rescaling of the coordinates, but it is often convenient to retain it. Finally, the two-form flux functions, b_{j}, are given by:

$$
\begin{equation*}
b_{1}=\frac{2}{a u} e^{h_{1}+h_{2}} \partial_{u} h_{1}, \quad b_{2}=\frac{2}{a u} e^{h_{1}+h_{2}} \partial_{u} h_{2}, \quad b_{3}=-\frac{2}{a u} \sin ^{2}\left(\frac{1}{2} \beta\right) e^{h_{1}+h_{2}} \tag{5.14}
\end{equation*}
$$

One can re-write the fluxes in a slightly more compact form using (3.2) and (3.10):

$$
\begin{equation*}
B_{(2)}=\frac{2 i}{\bar{z}_{3}}\left[d z_{1} \wedge d z_{2}-z_{1} z_{2} \cos ^{2}\left(\frac{1}{2} \beta\right) \omega_{1} \wedge \omega_{2}\right] . \tag{5.15}
\end{equation*}
$$

It is also worth noting that if we convert this to frames then $B_{(2)}$ has the following component in the 6789 direction:

$$
\begin{equation*}
a i \tan \left(\frac{1}{2} \beta\right) e^{i\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)}\left(e^{6}+i e^{9}\right) \wedge\left(e^{7}+i e^{8}\right), \tag{5.16}
\end{equation*}
$$

exactly as in (19.
Thus, we once again find a family of solutions that are almost Calabi-Yau in that the metric is hermitian with respect to an integrable complex structure, and the holomorphic $(3,0)$ form satisfies (4.14). The metric is simply not Kähler, and there is a non-trivial flux that can be arranged to have a potential of $(2,0)$ type. The underlying master differential equation that governs our new solution is a relatively simple deformation of the equation that governs the corresponding Calabi-Yau metrics, and follows a very similar pattern to that obtained in [19].

6. Radial Coulomb branch flows

The geometry of $\mathcal{N}=1$ supersymmetric Coulomb branch flows in which the branes are allowed to spread purely radially were analyzed in [19], [7]. These flows preserve the $S U(2)$ global symmetry that rotates $\left(\Phi_{1}, \Phi_{2}\right)$ as a doublet. Accordingly, the complex coordinates analogous to (2.4) were taken to be:

$$
\begin{equation*}
\Phi_{1} \sim V \cos \left(\frac{1}{2} \phi_{1}\right) e^{-\frac{i}{2}\left(\phi_{2}+\phi_{3}\right)}, \quad \Phi_{2} \sim V \sin \left(\frac{1}{2} \phi_{1}\right) e^{\frac{i}{2}\left(\phi_{2}-\phi_{3}\right)}, \quad \Phi_{3} \sim u e^{i \phi} . \tag{6.1}
\end{equation*}
$$

By comparing this to (2.4) we see that the relevant change of coordinates is:

$$
\begin{equation*}
v=V \cos \left(\frac{1}{2} \phi_{1}\right) \quad w=V \sin \left(\frac{1}{2} \phi_{1}\right), \quad \varphi_{1}=\frac{1}{2}\left(\phi_{3}+\phi_{2}\right), \quad \varphi_{2}=\frac{1}{2}\left(\phi_{3}-\phi_{2}\right) . \tag{6.2}
\end{equation*}
$$

Similarly, the analog of (3.2) was:

$$
\begin{equation*}
z_{1}=e^{\frac{1}{2} \Psi} \cos \left(\frac{1}{2} \phi_{1}\right) e^{\frac{i}{2}\left(\phi_{2}+\phi_{3}\right)}, \quad z_{2}=e^{\frac{1}{2} \Psi} \sin \left(\frac{1}{2} \phi_{1}\right) e^{-\frac{i}{2}\left(\phi_{2}-\phi_{3}\right)}, \quad z_{3}=u e^{-i \phi} . \tag{6.3}
\end{equation*}
$$

and hence one has:

$$
\begin{equation*}
h_{1}=\frac{1}{2} \Psi+\log \cos \left(\frac{1}{2} \phi_{1}\right) \quad h_{2}=\frac{1}{2} \Psi+\log \sin \left(\frac{1}{2} \phi_{1}\right) . \tag{6.4}
\end{equation*}
$$

One can then easily show that:

$$
\begin{equation*}
\frac{\Delta}{v w} e^{2\left(h_{1}+h_{2}\right)}=\frac{e^{2 \Psi}}{2 V^{3}} \frac{\partial \Psi}{\partial V}, \tag{6.5}
\end{equation*}
$$

and from this it follows that both equations in (4.17) reduce to:

$$
\begin{equation*}
\frac{1}{u} \partial_{u}\left(u \partial_{u} \Psi\right)+\frac{1}{V} \partial_{V}\left(\frac{1}{V^{3}} e^{2 \Psi} \partial_{V} \Psi\right)=0 \tag{6.6}
\end{equation*}
$$

while both equations in (5.9) reduce to:

$$
\begin{equation*}
u^{3} \partial_{u}\left(\frac{1}{u^{3}} \partial_{u} \Psi\right)+\frac{1}{V} \partial_{V}\left(\frac{1}{V^{3}} e^{2 \Psi} \partial_{V} \Psi\right)=0 . \tag{6.7}
\end{equation*}
$$

This exactly reproduces the results of (19].
One should also note that to completely solve the flow solution in 19] it required an auxiliary function defined by:

$$
\begin{equation*}
\frac{\partial \mathcal{S}}{\partial u}=-\frac{1}{2 u^{3} V^{3}} \frac{\partial e^{2 \Psi}}{\partial V}, \quad \frac{\partial \mathcal{S}}{\partial V}=\frac{V}{u^{3}} \frac{\partial \Psi}{\partial u} \tag{6.8}
\end{equation*}
$$

If one uses (6.5), (5.8) and (4.11) then one finds that:

$$
\begin{equation*}
\mathcal{S}=\frac{2}{u^{3}} \partial_{u} g . \tag{6.9}
\end{equation*}
$$

In other words, in (19) one could have viewed the second equation in (6.8) as implying the existence of a function, g, with:

$$
\begin{equation*}
\mathcal{S}=\frac{2}{u^{3}} \partial_{u} g, \quad \Psi=\frac{2}{V} \partial_{V} g, \tag{6.10}
\end{equation*}
$$

and then the first equation in (6.8) becomes a differential equation for g, and this is simply the reduction of (5.8). Thus, by recasting the entire problem in terms of g, one sees that there is nothing in the work of [19] that is special to two variables: All the interesting functions merely emerge as partial derivatives of the single, underlying master function, g.

7. Gauged supergravity flows

There is a three-parameter family of solutions that should be among the new flux solutions presented in section 司. This family was obtained by "lifting" solutions of five-dimensional, gauged supergravity [14, [15], and we now show how it fits into our more general class of solutions. We will first summarize the details of the original gauged supergravity solution and identify its integrable complex structure by giving the holomorphic (1,0)-forms. We then re-write the metric in terms of these forms as in (3.4) and identify the functions, A_{0}, \ldots, A_{3}. Having done this we can read off the master functions, h_{1} and h_{2}, and then verify that they determine all the other functions in the solution, as outlined in section 国. In particular, one can verify that that the equations of motion in five-dimensional supergravity imply that the master equations, (5.9), are satisfied.

7.1 The known solution and its holomorphic structure

In five-dimensions this solution is characterized in terms of three scalar fields, denoted by χ, ν and ρ, and a superpotential, W. The superpotential is [14, 15]:

$$
\begin{equation*}
W=\frac{1}{4} \rho^{4}(\cosh (2 \chi)-3)-\frac{1}{4 \rho^{2}}\left(\nu^{2}+\nu^{-2}\right)(\cosh (2 \chi)+1) \tag{7.1}
\end{equation*}
$$

and the equations of motion are:

$$
\begin{equation*}
\frac{d \rho}{d r}=\frac{1}{6 L} \rho^{2} \frac{\partial W}{\partial \rho}, \quad \frac{d \nu}{d r}=\frac{1}{2 L} \nu^{2} \frac{\partial W}{\partial \nu}, \quad \frac{d \chi}{d r}=\frac{1}{L} \frac{\partial W}{\partial \chi} \tag{7.2}
\end{equation*}
$$

The five-dimensional metric is then given by

$$
\begin{equation*}
d s_{1,4}^{2}=d r^{2}+e^{2 A(r)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right) \tag{7.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{d A}{d r}=-\frac{2}{3 L} W \tag{7.4}
\end{equation*}
$$

To lift this to ten dimensions the authors of 14, 15] introduced the following coordinates to parametrize the five-sphere in \mathbb{C}^{3} :

$$
\left.\begin{array}{rl}
z_{1} & \equiv x_{1}+i x_{2} \\
=\cos \theta \cos \phi e^{i \varphi_{1}}, \quad z_{2} \equiv x_{3}-i x_{4}=\cos \theta \sin \phi e^{-i \varphi_{2}} \tag{7.5}\\
z_{3} & \equiv x_{5}-i x_{6}
\end{array}\right) \sin \theta e^{-i \varphi_{3}} .
$$

The five-dimensional solution then lifts to the ten-dimensional metric:

$$
\begin{equation*}
d s_{10}^{2}=\Omega^{2} d s_{1,4}^{2}+d s_{5}^{2} \tag{7.6}
\end{equation*}
$$

where Ω, is given by:

$$
\begin{equation*}
\Omega \equiv(\cosh \chi)^{\frac{1}{2}}\left(\rho^{-2}\left(\nu^{2} \cos ^{2} \phi+\nu^{-2} \sin ^{2} \phi\right) \cos ^{2} \theta+\rho^{4} \sin ^{2} \theta\right)^{\frac{1}{4}} \tag{7.7}
\end{equation*}
$$

The metric, $d s_{5}^{2}$, is a complicated metric on the deformed five-sphere:

$$
\begin{align*}
d s_{5}^{2}= & L^{2} \Omega^{-2}\left[\rho^{-4}\left(\cos ^{2} \theta+\rho^{6} \sin ^{2} \theta\left(\nu^{-2} \cos ^{2} \phi+\nu^{2} \sin ^{2} \phi\right)\right) d \theta^{2}\right. \\
& +\rho^{2} \cos ^{2} \theta\left(\nu^{2} \cos ^{2} \phi+\nu^{-2} \sin ^{2} \phi\right) d \phi^{2} \\
& -2 \rho^{2}\left(\nu^{2}-\nu^{-2}\right) \sin \theta \cos \theta \sin \phi \cos \phi d \theta d \phi \\
& \left.+\rho^{2} \cos ^{2} \theta\left(\nu^{-2} \cos ^{2} \phi d \varphi_{1}^{2}+\nu^{2} \sin ^{2} \phi d \varphi_{2}^{2}\right)+\rho^{-4} \sin ^{2} \theta d \varphi_{3}^{2}\right] \\
& +L^{2} \Omega^{-6} \sinh ^{2} \chi \cosh ^{2} \chi\left(\cos ^{2} \theta\left(\cos ^{2} \phi d \varphi_{1}-\sin ^{2} \phi d \varphi_{2}\right)-\sin ^{2} \theta d \varphi_{3}\right)^{2} . \tag{7.8}
\end{align*}
$$

where L is the radius of the round sphere.
To relate this to the solution presented here one makes the change of variable:

$$
\begin{equation*}
u=e^{\frac{3}{2} A} \sqrt{\sinh \chi} \sin \theta, \quad v=e^{A} \rho \nu^{-1} \cos \theta \cos \phi, \quad w=e^{A} \rho \nu \cos \theta \sin \phi \tag{7.9}
\end{equation*}
$$

The metric (7.8) can now be written in terms of the (integrable) holomorphic forms:

$$
\begin{align*}
& \omega_{3} \equiv d u-i u d \varphi_{3}, \\
& \omega_{1} \equiv d v-v \mu_{1}+i v d \varphi_{1}+\frac{v}{u}\left(\frac{\nu^{2} \sinh ^{2} \chi \sin ^{2} \theta}{X_{0}}\right) \omega_{3}, \\
& \omega_{2} \equiv d w-w \mu_{2}+i w d \varphi_{2}+\frac{w}{u}\left(\frac{\nu^{-2} \sinh ^{2} \chi \sin ^{2} \theta}{X_{0}}\right) \omega_{3}, \tag{7.10}
\end{align*}
$$

where

$$
\begin{align*}
& \mu_{1} \equiv \frac{\nu^{2} s^{2}}{L \rho^{2}} d r, \quad \mu_{2} \equiv \frac{\nu^{-2} s^{2}}{L \rho^{2}} d r \\
& X_{0} \equiv \rho^{6} \sin ^{2} \theta+c^{2} \cos ^{2} \theta\left(\nu^{2} \cos ^{2} \phi+\nu^{-2} \sin ^{2} \phi\right), \tag{7.11}
\end{align*}
$$

and we have adopted the convenient shorthand:

$$
\begin{equation*}
c \equiv \cosh \chi, \quad s \equiv \sinh \chi \tag{7.12}
\end{equation*}
$$

The six-dimensional metric metric that underlies (7.6) is:

$$
\begin{equation*}
d s_{6}^{2}=L^{-2} e^{2 A}\left(\Omega^{4} d r^{2}+\Omega^{2} d s_{5}^{2}\right), \tag{7.13}
\end{equation*}
$$

has precisely the form (3.4) with

$$
\begin{align*}
& A_{1}=Y_{0}^{-1}\left(\rho^{6} \sin ^{2} \theta+\cos ^{2} \theta\left(c^{2} \nu^{2} \cos ^{2} \phi+\nu^{-2} \sin ^{2} \phi\right)\right), \\
& A_{2}=Y_{0}^{-1}\left(\rho^{6} \sin ^{2} \theta+\cos ^{2} \theta\left(\nu^{2} \cos ^{2} \phi+c^{2} \nu^{-2} \sin ^{2} \phi\right)\right), \\
& A_{3}=\frac{e^{2 A} c^{2} \sin ^{2} \theta}{\rho^{4} u^{2} X_{0}} Y_{0}, \quad A_{0}=\frac{e^{-2 A} s^{2} v w}{\rho^{2} Y_{0}}, \tag{7.14}
\end{align*}
$$

where

$$
\begin{equation*}
Y_{0} \equiv \rho^{6} \sin ^{2} \theta+\cos ^{2} \theta\left(\nu^{2} \cos ^{2} \phi+\nu^{-2} \sin ^{2} \phi\right) . \tag{7.15}
\end{equation*}
$$

To verify this one first uses the co-ordinate transformations in (7.9) to obtain the holomorphic forms, ω_{i}, of (7.10) in terms of the co-ordinates (r, θ, ϕ). One can then use these expressions along with metric functions, A_{i}, given in (7.14) to obtain, after a rather long but straightforward computation, the metric in (7.8).

7.2 The master functions

By comparing (4.20) and (7.10), we can read off the exterior derivatives of the functions, h_{j} :

$$
\begin{equation*}
d h_{1}=\frac{d v}{v}-\mu_{1}, \quad d h_{2}=\frac{d w}{w}-\mu_{2} . \tag{7.16}
\end{equation*}
$$

One also finds the conditions:

$$
\begin{equation*}
\partial_{u} h_{1}=\left(\frac{\nu^{2} \sinh ^{2} \chi \sin ^{2} \theta}{u X_{0}}\right), \quad \partial_{u} h_{2}=\left(\frac{\nu^{-2} \sinh ^{2} \chi \sin ^{2} \theta}{u X_{0}}\right) . \tag{7.17}
\end{equation*}
$$

One can easily check that this is consistent with (7.16), indeed, using the change of variables (7.9) one can check that:

$$
\begin{align*}
& \mu_{1}=\frac{e^{-2 A} s^{2}}{\rho^{2} X_{0}}\left(\nu^{4} v d v+w d w\right)+\frac{\nu^{2} s^{2} \sin ^{2} \theta}{u X_{0}} d u \\
& \mu_{2}=\frac{e^{-2 A} s^{2}}{\rho^{2} X_{0}}\left(v d v+\nu^{-4} w d w\right)+\frac{s^{2} \sin ^{2} \theta}{\nu^{2} u X_{0}} d u \tag{7.18}
\end{align*}
$$

Define functions:

$$
\begin{equation*}
q_{1} \equiv \int \frac{\nu^{2} s^{2}}{L \rho^{2}} d r, \quad q_{2} \equiv \int \frac{\nu^{-2} s^{2}}{L \rho^{2}} d r \tag{7.19}
\end{equation*}
$$

and then we have

$$
\begin{equation*}
h_{1}=\log (v)-q_{1}, \quad h_{2}=\log (w)-q_{2} . \tag{7.20}
\end{equation*}
$$

While we do not know explicit expressions for these function individually one can easily show that:

$$
\begin{equation*}
e^{2\left(h_{1}+h_{2}\right)}=v^{2} w^{2} e^{-A} \rho^{-4} c^{2} s^{-1}, \tag{7.21}
\end{equation*}
$$

which greatly simplifies (5.9).
Note that apart from the trivial log terms, the functions, h_{j} are functions of only the original radial coordinate in anti-de Sitter space. We therefore have the h_{j} implicitly in terms of u, v and w. One can use the equations of motion (7.2) to verify that h_{1} and h_{2} satisfy (5.9).

One can now obtain the function, g, by integrating:

$$
\begin{equation*}
h_{1}=\frac{1}{v} \frac{\partial g}{\partial v}, \quad h_{2}=\frac{1}{w} \frac{\partial g}{\partial w}, \quad A_{3}=-u^{3} \frac{\partial}{\partial u}\left(\frac{1}{u^{3}} \frac{\partial g}{\partial u}\right) . \tag{7.22}
\end{equation*}
$$

It is trivial to integrate the log terms to obtain:

$$
\begin{equation*}
g=\frac{1}{4}\left(v^{2}+w^{2}\right)+\frac{1}{2} v^{2} \log (v)+\frac{1}{2} w^{2} \log (w)+\tilde{g}, \tag{7.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{v} \partial_{v} \tilde{g}=-q_{1}, \quad \frac{1}{w} \partial_{w} \tilde{g}=-q_{2}, \quad A_{3}=-u^{3} \frac{\partial}{\partial u}\left(\frac{1}{u^{3}} \frac{\partial \tilde{g}}{\partial u}\right) . \tag{7.24}
\end{equation*}
$$

Since the q_{j} are only known explicitly as functions of r, and thus implicitly as a function of (u, v, w), one can, at best hope to determine \tilde{g} as a function of r, θ and ϕ. One can make significant progress in doing this explicitly, and in this is described in the Appendix. We have shown here exactly how the solution of (14, 15] appears as a special solution to the general class of solutions derived in section 5 .

8. Conclusions

We have defined a large class of $\mathcal{N}=1$ supersymmetric holographic flow solutions, and reduced them to finding a "master function" that is the solution of a single partial differential equation. As has been observed in other papers [17-20], such differential equations naturally linearize at infinity and have a straightforward perturbation expansion. More significantly, this equation is once again a rather simple deformation of the Calabi-Yau condition. Indeed, the entire geometry is, once again, almost Calabi-Yau in that it has an integrable complex structure with a hermitian metric. There is also a holomorphic $(3,0)$ form, Ω, such that $\Omega \wedge \bar{\Omega}$ is the volume form. The crucial difference between our solution and a Calabi-Yau compactification is that the metric is not Kähler, and there is a nontrivial, non-normalizable 3 -form flux. This flux dielectrically polarizes the $D 3$-branes into $D 5$-branes [29] and this is reflected in the deformation of one of the projectors that defines the supersymmetry [16-21].

Our results here represent a significant extension of the results of 19. On a technical level we have found a class of solutions with a smaller amount of symmetry, in which the initial Ansatz is based upon functions of three variables. On a more physical level, we have a family of flows that probes two independent directions of the Coulomb branch of the non-trivial $\mathcal{N}=1$ supersymmetric fixed-point. That is, our solutions describe brane configurations that can spread in independent radial distributions in each of the two complex directions of the Coulomb branch of the $\mathcal{N}=1$ supersymmetric flows. We have shown

While we have completely characterized our solutions via a simple deformation of the Calabi-Yau conditions, this deformation is expressed rather technically in terms of changing coefficients of the master differential equation. This must have some more natural geometric interpretation. The results presented here highlight the strong connections to Calabi-Yau geometry, and as a result will provide a very useful basis for investigating the deformation of the geometry. Work on this is proceeding.

Acknowledgments

This work was supported in part by funds provided by the U.S. Department of Energy under grant number DE-FG03-84ER-40168. We would also like to thank N. Halmagyi, D. Nemeschansky and K. Pilch for helpful conversations.

A. Finding the master function of the gauged supergravity flow

One can make significant progress in partially integrating (7.24) to obtain $\tilde{g}(r, \theta, \phi)$. The first step is to write these equations in terms of derivatives with respect to r, θ and ϕ. The first two equations in (7.24) reduce to:

$$
\begin{align*}
& \partial_{\phi} \tilde{g}=e^{2 A} \rho^{2}\left(q_{1} \nu^{-2}-q_{2} \nu^{2}\right) \cos ^{2} \theta \sin \phi \cos \phi, \tag{A.1}\\
& \left(\partial_{r}-\left(\partial_{r} \log (u)\right) \tan \theta \partial_{\theta}\right) \tilde{g}=-L^{-1} e^{2 A}\left[c^{2}\left(q_{1} \cos ^{2} \phi+q_{2} \sin ^{2} \phi\right) \cos ^{2} \theta\right.
\end{align*}
$$

$$
\begin{equation*}
\left.+\rho^{6}\left(\nu^{-2} q_{1} \cos ^{2} \phi+\nu^{2} q_{2} \sin ^{2} \phi\right) \sin ^{2} \theta\right] \tag{A.2}
\end{equation*}
$$

where $u(r, \theta)$ is defined by (7.9). Observe that the differential operator on the left-hand side of (A.2) annihilates the coordinate, u, and so these two equations indeed only give information about the v and w dependence of \tilde{g}.

Equation (A.1) is trivial to integrate and yields

$$
\begin{equation*}
\tilde{g}=-\frac{1}{4} e^{2 A} \rho^{2}\left(q_{1} \nu^{-2}-q_{2} \nu^{2}\right) \cos ^{2} \theta \cos (2 \phi)+p(r, \theta) \tag{A.3}
\end{equation*}
$$

for some function, $p(r, \theta)$. One can now substitute this into (A.2) to obtain an equation for $p(r, \theta)$.

At this point it is convenient to introduce a change of variables:

$$
\begin{align*}
& z \equiv \frac{1}{2} \log (u)=\frac{1}{4} \log \left(e^{3 A} \sinh \chi \sin ^{2} \theta\right) \\
& t \equiv \frac{1}{2} \log \left(\frac{u}{\sin ^{2} \theta}\right)=\frac{1}{4} \log \left(\frac{e^{3 A} \sinh \chi}{\sin ^{2} \theta}\right) \tag{A.4}
\end{align*}
$$

We then find:

$$
\begin{equation*}
\partial_{t} p=-\frac{1}{2} e^{2 A} \rho^{-4}\left[c^{2}\left(q_{1}+q_{2}\right)\left(1-\sin ^{2} \theta\right)+\rho^{6}\left(\nu^{-2} q_{1}+\nu^{2} q_{2}\right) \sin ^{2} \theta\right] \tag{A.5}
\end{equation*}
$$

Note that $\sin \theta=e^{z-t}$ while e^{z+t} is purely a function of r, and so (A.5) has the form:

$$
\begin{equation*}
\partial_{t} p=f_{1}(z+t)+e^{4 z} f_{2}(z+t) \tag{A.6}
\end{equation*}
$$

for some functions, f_{1} and f_{2}. This is trivially solved by quadrature, and the result is:

$$
\begin{align*}
p(r, \theta)= & r(u)-\frac{1}{2 L} \int d r e^{2 A} c^{2}\left(q_{1}+q_{2}\right) \\
& +\frac{1}{2 L} u^{2} \int d r e^{-A} s^{-1}\left(c^{2}\left(q_{1}+q_{2}\right)-\rho^{6}\left(\nu^{-2} q_{1}+\nu^{2} q_{2}\right)\right) \tag{A.7}
\end{align*}
$$

where $r(u)$ is some, as yet, arbitrary function of u, and we have used the fact that $e^{4 z}=u^{2}$. The function, $r(u)$, can then be determined by substituting (A.3) and (A.7) into the third equation in (7.24).

References

[1] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 hep-th/0105097.
[2] M. Graña and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D 65 (2002) 126005 hep-th/0106014.
[3] K. Becker, M. Becker, K. Dasgupta and P.S. Green, Compactifications of heterotic theory on non-Kähler complex manifolds, I, JHEP 04 (2003) 007 hep-th/0301161.
[4] K. Becker, M. Becker, P.S. Green, K. Dasgupta and E. Sharpe, Compactifications of heterotic strings on non-Kähler complex manifolds, II, Nucl. Phys. B 678 (2004) 19 hep-th/0310058.
[5] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 hep-th/0406137.
[6] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Type II strings and generalized Calabi-Yau manifolds, Comptes Rendus Physique 5 (2004) 979-986 hep-th/0409176.
[7] N. Halmagyi, K. Pilch, C. Romelsberger and N.P. Warner, The complex geometry of holographic flows of quiver gauge theories, hep-th/0406147.
[8] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional $N=1$ supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 hep-th/9503121.
[9] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 hep-th/9904017.
[10] K. Pilch and N.P. Warner, A new supersymmetric compactification of chiral IIB supergravity, Phys. Lett. B 487 (2000) 22 hep-th/0002192.
[11] K. Pilch and N.P. Warner, $N=1$ supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 hep-th/0006066.
[12] C.V. Johnson, K.J. Lovis and D.C. Page, Probing some $N=1$ AdS/CFT RG flows, JHEP 05 (2001) 036 hep-th/0011166.
[13] C.V. Johnson, K.J. Lovis and D.C. Page, The Kähler structure of supersymmetric holographic $R G$ flows, JHEP 10 (2001) 014 hep-th/0107261.
[14] A. Khavaev and N.P. Warner, A class of $N=1$ supersymmetric $R G$ flows from five-dimensional $N=8$ supergravity, Phys. Lett. B 495 (2000) 215 hep-th/0009159.
[15] A. Khavaev and N.P. Warner, An $N=1$ supersymmetric Coulomb flow in IIB supergravity, Phys. Lett. B 522 (2001) 181 hep-th/0106032.
[16] C.N. Pope and N.P. Warner, A dielectric flow solution with maximal supersymmetry, JHEP 04 (2004) 011 hep-th/0304132.
[17] C.N. Gowdigere, D. Nemeschansky and N.P. Warner, Supersymmetric solutions with fluxes from algebraic Killing spinors, Adv. Theor. Math. Phys. 7 (2004) 787 hep-th/0306097.
[18] K. Pilch and N.P. Warner, Generalizing the $N=2$ supersymmetric $R G$ flow solution of IIB supergravity, Nucl. Phys. B 675 (2003) 99 hep-th/0306098.
[19] K. Pilch and N.P. Warner, $N=1$ supersymmetric solutions of IIB supergravity from Killing spinors, hep-th/0403005.
[20] D. Nemeschansky and N.P. Warner, A family of M-theory flows with four supersymmetries, hep-th/0403006.
[21] I. Bena and N.P. Warner, A harmonic family of dielectric flow solutions with maximal supersymmetry, JHEP 12 (2004) 021 hep-th/0406145.
[22] A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged $N=8$ supergravity in five dimensions, Phys. Lett. B 487 (2000) 14 hep-th/9812035.
[23] J.H. Schwarz, Covariant field equations of chiral $N=2 D=10$ supergravity, Nucl. Phys. B 226 (1983) 269.
[24] J.H. Schwarz and P.C. West, Symmetries and transformations of chiral $N=2 D=10$ supergravity, Phys. Lett. B 126 (1983) 301.
[25] P.S. Howe and P.C. West, The complete $N=2, D=10$ supergravity, Nucl. Phys. B 238 (1984) 181.
[26] R. Corrado, K. Pilch and N.P. Warner, An $N=2$ supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 hep-th/0107220.
[27] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 hep-th/9807080.
[28] R. Corrado, M. Günaydin, N.P. Warner and M. Zagermann, Orbifolds and flows from gauged supergravity, Phys. Rev. D 65 (2002) 125024 hep-th/0203057.
[29] R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 hep-th/9910053.

[^0]: ${ }^{1}$ By effectively compact we mean non-compact, but with normalizable background fields.

[^1]: ${ }^{2}$ They can also be deduced from the results of 129 .

